Measuring Queues in Campus Network via Link Tapping

Xiaoqi Chen
Princeton University
xiaoqic@cs.princeton.edu

ABSTRACT

We monitored our local campus network to diagnose a packet drop
phenomenon we observed on a lightly utilized link, using a queue
monitoring program running on a P4-based programmable switch.
The setup uses the programmable switch to tap both ingress and
egress ports of a legacy router, which does not have the capability to
report granular queuing metrics itself. Our investigation found that
the packet drops are potentially caused by an active performance
monitoring tool simultaneously scheduling too many tests.

CCS CONCEPTS

» Networks — Network measurement; Packet scheduling.

KEYWORDS

Queue monitoring, queuing delay, congestion control

1 INTRODUCTION

We observed one campus network router occasionally reporting
a large amount of packet drops in a particular egress port even
though it was operating at low average link utilization. There are
several different causes for such behavior, including microbursts,
hardware failure, bug in queue scheduling implementation, and so
on. In particular, assuming there is no bug or failure, we suspect
the router may indeed run out of queuing buffer briefly, due to a
high rate of ingress traffic. However, existing network monitoring
tools only provide very coarse-grained information, at seconds or
minutes time scale, therefore yielding little insight for network
operators to debug transient queue buildups.

The emergence of programmable switch allows us to write al-
gorithms to monitor and analyze queuing directly in the data
plane [1, 2], or let hosts collect fine-grained queuing metrics via
in-band network telemetry (INT) and optimize congestion con-
trol [3]. However, replacing existing routers with programmable
switches is operationally infeasible and uneconomical. Instead, we
show that it is still possible to harness the power of programmable
switches when analyzing the queues in legacy devices. In this pa-
per, we present a novel setup to analyze queues in legacy devices
with 10Gbps/100Gbps links, in a non-invasive fashion within an
operational campus network, using tapping links and an off-path
observation device. We report our experience of using a P4-based
programmable switch to analyze queuing anomaly at a router in
Princeton University’s campus network.

2 BACKGROUND

Princeton University’s campus network peers with the Internet as
well as two research networks, ESNet and Internet2. The Office of
Information Technology (OIT) administers and operates the campus
network infrastructure as well as the university’s data centers and
High Performance Computing (HPC) clusters.

Hyojoon Kim
Princeton University
joonk@princeton.edu

Target router to debug

Ingress

P4 Programmable switch =
Collector server

Figure 1: We use tapping and an off-path programmable
switch to analyze queue utilization in the target router.

The routers in our campus network use conventional network
monitoring and analysis tools, such as SNMP, NetFlow, Syslog,
etc. Princeton OIT maintains a centralized monitoring system that
gathers counters from all routers, such as bytes count and packet
drop count. Princeton uses the Big Monitoring Fabric by BigSwitch
Networks as its packet broker system.

We occasionally observe a large number of packet drops in a bor-
der router (the "target router"). The target router has one 100Gbps
upstream connection to Internet2 and multiple 10Gbps downstream
connection to servers, and the drops are on one 10Gbps downstream
link. Monitoring data showed that during the packet drop period,
this downstream link has a low average utilization. We suspect that
the queue may be experiencing bursty traffic and was overflown, or
there could be bugs in the router implementation. However, since
the target router can only provide monitoring data at 1-minute
granularity, we cannot investigate the phenomenon further.

We have several P4-based programmable switches at hand, yet
OIT have not deployed programmable switches to process pro-
duction network traffic. As these switches can run fine-grained
network measurement algorithms at per-packet granularity, we
decided to use a programmable switch as an off-path observation
device, and use it to analyze queuing in the target router.

3 ANALYZE QUEUING IN LEGACY DEVICES

We now give a high level overview of our tapping-based queuing
delay measurement experiment. As illustrated in Figure 1, we used
an off-path programmable switch running a queue analysis algo-
rithm [1] to monitor the target legacy network device, which does
not provide fine-grained measurement of queuing delay. The pro-
grammable switch then sends reports to a collector server whenever
high queuing delay is observed.

Tapping legacy switches: To analyze the queuing delay in the
target switch, we need to tap both its ingress and egress link. We
can implement this using physical layer split-fiber tapping, or use a
router’s SPAN port. In our setup, we tap both the 100Gbps ingress
and the 10Gbps egress port, using physical layer tapping.



BS’19, December 2-3, Stanford, CA

Xiaoqi Chen and Hyojoon Kim.

0.5 Flow Size distribution 0.5 Flow Size distribution 0.5 Flow Size distribution
% 0.4 % 0.4 % 0.4
£ £ N
B B ®
2 0.3 © 0.3 © 0.3
a a a
o o o
£ £ £
202 202 202
3 3 3
o o o

0.1 0.1 0.1

0.0 0.0 0.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 5 10 15 20 0 1 2 3 4 5 6 7 8
Time (s) Time (s) Time (s)
(a) Steady state congestion (b) Bursty (c) Outlier high-delay packets

Figure 2: Three types of high queuing delay events observed in our monitoring period.

Analyzing queuing delay: After tapping links, we can use
an observation device (a two-port smart NIC or a programmable
switch) to match two appearances of the same packet, once on
the ingress link and once more on the egress link, and precisely
compute the time difference between the two. In our setup, we use
a Barefoot Tofino Wedge 100-32X programmable switch. We refer
interested readers to [1] for the technical details.

Incident reporting: We connect the programmable switch to
a collector server using a 10Gbps link, and configure the pro-
grammable switch to send postcard-style reports with timestamp,
calculated delay, flow ID etc., whenever it observes the queuing
delay on the target router exceeds 0.2ms, as typically the delay is
much lower when the queuing buffer is empty. Furthermore, we
configure the switch to send at least 1000 subsequent packets after
observing any high-delay packet.

4 RESULTS

We collected data for approximately 4 weeks (from May 4th to May
30th) and gathered 18 high-delay incidents. Meanwhile, we also
examined coarse-grained drop statistics from the existing router
monitoring interface.

After analyzing the collected data, we categorized the high-delay
incidents into three categories. In Figure 2, We present the queuing
delay over time as well as the flow size distribution in three example
incidents, with flow defined using five-tuples. We have successfully
recovered queuing delay for a subset of egress packets observed,;
each data point in the figure shows one such packet’s delay.

Steady state congestion (4 incidents): In these incidents we
observe a consistent, high queuing delay in the queue for a period
of time, as shown in Figure 2(a). In these cases, there’s usually only
one significant flow in the queue, with its congestion control algo-
rithm probing for maximum throughput; the delay observed might
corresponds to the Early Congestion Notification (ECN) threshold.
Drop statistics show that there are minimal packet dropping in
these cases.

Bursty (10 incidents): The queueing delay oscillates wildly dur-
ing these incidents, as shown in Figure 2(b). Apparently, there are
multiple large flows competing for bandwidth. Each flow’s conges-
tion control algorithm failed to probe the bottleneck bandwidth
together, thus their total sending rate is either too large or too small

throughout the period. We also verified that the egress link’s peak
throughput reaches nearly 10Gbps, although it varies wildly.

Drop statistics show that these incidents caused a large amount
of packet drops, while the average throughput is low. These features
match the incidents previously observed by the campus network
operator. After investigating individual flow IDs, we suspect that
these incidents are likely caused by multiple PerfSonar throughput
and latency tests being initiated concurrently, from multiple ex-
ternal hosts on Internet2, although PerfSonar scheduler [4] would
have scheduled multiple tests in series (not in parallel). As our
data were aggregated and sampled, we need to collect more data
and carefully analyze to pinpoint the root cause of these bursty,
concurrent flows.

Outlier high-delay packets (4 incidents): In Figure 2(c), the
link appears underutilized and most packets have very low queuing
delay. However, there are a handful of packets (less than 5) suffered
from high queuing delay. We suspect the delay experienced by these
outlier packets are not caused by a full queuing buffer, and leave
them for further investigation.

5 CONCLUSION

We inferred the queue utilization in a campus network router using
link tapping and an off-path programmable switch, and categorized
our observations into three types of incidents: normal, bursty, and
outliers. We observed that a large number of packet drops will
occur when there are many active large flows, i.e. those entering
Congestion Control and competing for bandwidth at this bottleneck
link, and the queue will exhibit bursty pattern.

REFERENCES

[1] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstreich,
Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue Measurement
in the Data Plane. In Proceedings of the 15th International Conference on emerging
Networking EXperiments and Technologies (CONEXT). ACM.
Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical real-time microburst monitoring for datacenter networks.
In Proceedings of the 9th Asia-Pacific Workshop on Systems (APSys). ACM, 8.
Yuliang Li, Rui Miao, Honggiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
high precision congestion control. In Proceedings of the ACM SIGCOMM 2019
Conference. ACM, 44-58.
4] perfSONAR Project. 2019. perfSONAR Toolkit 4.2.2 documentation: Test and
Tool Reference. https://docs.perfsonar.net/pscheduler_ref tests_tools.html#test-
classifications.

A

=


https://docs.perfsonar.net/pscheduler_ref_tests_tools.html#test-classifications
https://docs.perfsonar.net/pscheduler_ref_tests_tools.html#test-classifications

	Abstract
	1 Introduction
	2 Background
	3 Analyze queuing in legacy devices
	4 Results
	5 Conclusion
	References

